B-Nekrasov matrices and error bounds for linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices
In this paper, new error bounds for the linear complementarity problem are obtained when the involved matrix is a weakly chained diagonally dominant B-matrix. The proposed error bounds are better than some existing results. The advantages of the results obtained are illustrated by numerical examples.
متن کاملComputation of Error Bounds for P-matrix Linear Complementarity Problems
We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into a P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations, which is sharper than the Mathias-Pang error bound. Pre...
متن کاملAn improved error bound for linear complementarity problems for B-matrices
A new error bound for the linear complementarity problem when the matrix involved is a B-matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7):1071-1075, 2009) are provided.
متن کاملError bounds for symmetric cone complementarity problems
In this paper, we investigate the issue of error bounds for symmetric cone complementarity problems (SCCPs). In particular, we show that the distance between an arbitrary point in Euclidean Jordan algebra and the solution set of the symmetric cone complementarity problem can be bounded above by some merit functions such as FischerBurmeister merit function, the natural residual function and the ...
متن کاملP D - Matrices and Linear Complementarity Problems
Motivated by the definition of P†-matrix ([9]), another generalization of a P -matrix for square singular matrices called PD-matrix is proposed first. Then the uniqueness of solution of Linear Complementarity Problems for square singular matrices is proved using PD-matrices. Finally some results which are true for P -matrices are extended to PD-matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2015
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-015-0054-y